ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Термопреобразователи сопротивления ДТС

Назначение средства измерений

Термопреобразователи сопротивления ДТС (далее по тексту – ТС) предназначены для непрерывного измерения температуры жидких, паро- и газообразных сред, сыпучих материалов и твердых тел, в том числе в составе систем теплоснабжения, вентиляции и кондиционирования воздуха.

Описание средства измерений

Принцип действия TC основан на изменении электрического сопротивления чувствительного элемента (ЧЭ) при изменении температуры. Величина изменения электрического сопротивления определяется типом материала ЧЭ и величиной изменения температуры.

ЧЭ ТС выполнен из металлической проволоки или в виде напыленной на подложку плёнки.

Для защиты от механических воздействий ЧЭ помещен в защитную арматуру.

ТС изготавливаются в различных модификациях моделей XX4 и моделей XX5, отличающихся друг от друга конструктивным исполнением, типом HCX, количеством ЧЭ в корпусе, диапазоном измеряемых температур, способом контакта с измеряемой средой. ТС изготавливаются с кабельным выводом или с коммутационной головкой.

ТС выпускаются во взрывозащищенном исполнении.

В коммутационную головку ТС могут устанавливаться нормирующие преобразователи (НП), предназначенные для преобразования измеренной ЧЭ температуры в унифицированный выходной сигнал постоянного тока 4÷20 мА по ГОСТ 26.011-80 с возможностью наложения частотно-модулированного сигнала НАRT-протокола.

Фотографии общего вида ТС приведены на рисунках 1÷3.

Рис.1 - Общий вид термопреобразователей сопротивления с клеммными головками модели XX5

Рис.2 - Общий вид термопреобразователей сопротивления с кабельными выводами модели XX4

Рис.3 - Общий вид термопреобразователей сопротивления со встроенным нормирующим преобразователем

Программное обеспечение

Программное обеспечение (ПО) нормирующего преобразователя ТС (только для ТС со встроенным НП) состоит из встроенной в корпус средства измерений «Термопреобразователи сопротивления ДТС» части ПО.

Для функционирования преобразователей необходимо наличие встроенной части ПО.

Разделение ПО на метрологически значимую и незначимую части не реализовано. Метрологически значимой является вся встроенная часть ПО.

Идентификационные данные встроенной части ПО представлены в таблицах 1÷4. Таблица 1.

Идентификационные данные (признаки)	Значение
Наименование ПО	НПТ-2
Идентификационное наименование ПО	NPT02_v2_00.hex
Номер версии (идентификационный номер) ПО (*)	2.0
Цифровой идентификатор программного обеспечения	по номеру версии
Таблица 2.	

Идентификационные данные (признаки)	Значение
Наименование ПО	НПТ-3
Идентификационное наименование ПО	НПТ3_ПО_1.06.hex
Номер версии (идентификационный номер) ПО (*)	1.6
Цифровой идентификатор программного обеспечения	по номеру версии
Таблица 3.	

Идентификационные данные (признаки)	Значение
Наименование ПО	PR 4÷20 мA
Идентификационное наименование ПО	tok.bin
Номер версии (идентификационный номер) ПО (*)	6.13.1002
Цифровой идентификатор программного обеспечения	по номеру версии
T. C. A.	

Таблица 4.

Идентификационные данные (признаки)	Значение
Наименование ПО	PR 4÷20 MA + HART
Идентификационное наименование ПО	hart.bin
Номер версии (идентификационный номер) ПО (*)	6.13.1002
Цифровой идентификатор программного обеспечения	по номеру версии

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с рекомендацией по метрологии Р 50.2.077-2014, программное обеспечение защищено от преднамеренных изменений с помощью специальных программных средств.

Метрологические и технические характеристики

Рабочие диапазоны измеряемых температур, классы допуска TC от HCX по ГОСТ 6651-2009, приведены в таблице 5.

Таблина 5.

Класс	Допуск, °С	Диапазон измерений ⁽¹⁾ , °C			
допуска		Платиновый ТС, ЧЭ	Медный ТС, ЧЭ	Никелевый ТС, ЧЭ	
A W 0.15 F 0.15	$\pm (0,15+0,002 t)$	от минус 100 до плюс 450	-	-	
B W 0.3 F 0.3	$\pm (0.3 + 0.005 t)$	от минус 196 до плюс 660	от минус 50 до плюс 200	-	
C W 0.6 F 0.6	$\pm (0.6 + 0.01 t)$	от минус 196 до плюс 660	от минус 180 до плюс 200	от минус 60 до плюс 180	

Примечания:

Верхний предел измерений температуры TC не менее $^{3}/_{4}$ для медных TC и $^{1}/_{3}$ для платиновых TC от верхнего значения диапазона измерений указанных в таблице 1.

Номинальное сопротивление TC при 0 $^{\circ}$ C (R_0) в зависимости от исполнения 50; 100; 500; 1000 Ом.

Пределы допускаемой основной приведенной погрешности термопреобразователей сопротивления с унифицированным сигналом:

- для ТС с платиновыми ЧЭ, не более, %

 $\pm 0,25; \pm 0,5.$

- для ТС с медными ЧЭ, не более, %

 \pm 0,5; \pm 1,0.

- для ТС с никелевыми ЧЭ, не более, %

 $\pm 1,0.$

Пределы допускаемой дополнительной приведенной погрешности TC со встроенным нормирующим преобразователем, вызванной изменением температуры окружающего воздуха от нормальной (20 ± 10) °C до любой температуры в пределах рабочего диапазона не превышают 0,2 предела допускаемой основной приведенной погрешности.

Нормальные условия применения узлов коммутации:

- закрытые помещения без агрессивных паров и газов;
- относительная влажность воздуха, %......до 95
- атмосферное давление, кПа.....от 84,0 до 106,7

¹ Указаны предельные значения. Конкретный диапазон, в зависимости от типа применяемого чувствительного элемента, материала защитной арматуры и наличия НП, указан в паспорте и на шильдике TC.

^{2 |}t| - абсолютное значение температуры, °С, без учета знака.

Рабочие условия применения узлов коммутации: - помещения с нерегулируемыми климатическими условиями и (или) навесы; – температура окружающего воздуха, °С минус 40 до плюс 85 – относительная влажность воздуха, %......до 95 без конденсации (при температуре до плюс 35 °C) – атмосферное давление, кПа......от 84,0 до 106,7 Электрическое сопротивление изоляции между цепью ЧЭ и металлической частью защитной арматуры TC при температуре (20±10) °C и относительной влажности воздуха Диаметр защитной арматуры (в зависимости от модификации), мм...... $5 \div 10$ В соответствии с ГОСТ 14254-96, в зависимости от исполнения, степень защищенности узлов коммутации TC от воздействия окружающей среды IP54, IP65, IP67. По устойчивости к воздействию синусоидальных вибраций по ГОСТ Р 52931-2008 TC без монтажных элементов (в гладкой защитной арматуре) соответствуют группе V2, остальные группе N2. Средняя наработка ТС на отказ: – для платиновых TC, работающих в диапазоне температур от минус 50 до 250 °C – для платиновых ТС, работающих в диапазоне температур от минус 196 до минус 50 °C и от 250 до 450 °C при значении вероятности безотказной работы 0,95, не менее, – для платиновых TC, работающих в диапазоне температур от 450 до 660 °C при – для медных TC, работающих в диапазоне температур от минус 180 до 200 °C при

Знак утверждения типа

Знак утверждения типа наносится на корпус ТС при помощи наклейки или другим способом, не ухудшающим качества прибора, а также на титульный лист (в правом верхнем углу) паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

В комплектность поставки прибора входят:

Наименование	Обозначение	Количество	Комплект поставки
Термопреобразователь сопротивления	Согласно ТУ	1 шт.	В соответствии с заказом
Паспорт	КУВФ.405210.003ПС	1 экз.	На каждое изделие или на партию однотипных изделий при поставке в один адрес
Руководство по эксплуатации	КУВФ.405210.003РЭ	1 экз.	На каждое изделие или на партию однотипных изделий при поставке в один адрес
Методика поверки	КУВФ.405210.003МП	1 экз.	По требованию заказчика
Примечание – Допускается комплектование ТС паспортом, объединенным с			
руководством по эксплу	/атации.		

Поверка

осуществляется:

- в соответствии с ГОСТ 8.461-2009 «ГСОЕИ. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки» для ТС без нормирующих преобразователей;
- в соответствии с Инструкцией КУВФ.405210.003 МП «Термометры сопротивления ДТС со встроенным нормирующим преобразователем. Методика поверки», утвержденным ГЦИ СИ ФГУП «ВНИИМС», декабрь 2009 г. для ТС со встроенным нормирующим преобразователем.

Основные средства поверки:

- термостат нулевой с ванной глубиной не менее 300мм и неравномерностью температуры в рабочем объеме не более $\pm~0.01$ °C (например, нулевой термостат ТН-2, сосуд Дьюара);
- термостат паровой с перепадом температуры в рабочем пространстве по высоте на длине средней части 200 мм. не более 0.03 °C, с ванной глубиной не менее 300мм (например, $T\Pi$ -2);
- жидкостный термостат с диапазоном температуры от 40 до 300 °C, градиентом температуры в рабочем пространстве не более 0,05 °C/см, с ванной глубиной не менее 300мм (например, термостат переливной прецизионный ТПП-1.0);
- термостат с флюидизированной средой FB-08 с диапазоном температуры от 50 до 700 $^{\circ}$ C, кратковременной температурной стабильностью ± 0.3 $^{\circ}$ C за 30 мин, однородностью температурного поля в рабочем объеме 0,5 $^{\circ}$ C;
- эталонный термометр сопротивления 3-го разряда с диапазоном измерений от минус 196 °C до плюс 660 °C, с погрешностью по ГОСТ Р 8.588 (например, термометр сопротивления эталонный ЭТС-100);
- миллиамперметр с погрешностью измерений не менее $^{1}/_{3}$ γ_{π} , где γ_{π} предел допускаемого значения основной приведенной погрешности поверяемого ТС, с диапазоном измерений входных сигналов постоянного тока от 0 до 20 мА (например, прибор для поверки вольтметров дифференциальный В1-12, калибратор-измеритель унифицированных сигналов эталонный ИКСУ 2000);
- сопротивление 250 Ом класс точности не хуже 0,05 (например, магазин сопротивлений MCP-63);
- вольтметр с погрешностью измерений не менее $^{1}/_{3}$ γ_{π} , , где γ_{π} предел допускаемого значения основной приведенной погрешности поверяемого TC с диапазоном измерения входных сигналов постоянного напряжения от 0 до 10 В (например, вольтметры универсальные B7-46, IЦ31)

Сведения о методиках (методах) измерений

приведены в соответствующих разделах Руководства по эксплуатации КУВФ.405210.003РЭ.

Нормативные и технические документы, устанавливающие требования к термопреобразователям сопротивления ДТС

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные.

ТУ 4211-023-46526536-2009 «Термопреобразователи сопротивления ДТС. Технические условия».

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.

ГОСТ 8.461-2009 «ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Общество с ограниченной ответственностью (ООО)

«Производственное Объединение ОВЕН»

Адрес: 111024, г. Москва, 2-я ул. Энтузиастов, д.5, корп. 5

Тел.: (495) 221-60-64, факс (495) 728-41-45.

E-mail: support@owen.ru. Web-сайт: http://www.owen.ru/

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ΦГУП «ВНИИМС»)

Адрес: 119361, г.Москва, ул.Озерная, д.46 Тел./факс: (495) 437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				С.С. Голубев
регулированию и метрологии				
	М.п.	<u> </u>	»	2015 г.